Research projects
B09: Strategische Entscheidungen unter Unsicherheit im Entry-Exit-System
(Third Party Funds Group – Sub project)Overall project: SFB Transregio 154
Term: 1. July 2022 - 30. June 2026
Funding source: DFG / Sonderforschungsbereich / Transregio (SFB / TRR)
URL: https://www.trr154.fau.de/teilprojekte-phase-3/Wir entwickeln Modelle und Lösungsverfahren, die es uns erlauben, strategische Angebotsentscheidungen von Unternehmen in Gasmärkten zu analysieren. Dies führt im Allgemeinen zu Gleichgewichtsproblemen. Unser Fokus liegt dabei auf der Klasse der Multi-Leader-Follower-Games (MLFGs), bei denen eine Gruppe von Agenten in einem ersten Schritt (obere Ebene) Entscheidungen trifft, die die Entscheidungen einer anderen Gruppe von Agenten in einem zweiten Schritt (untere Ebene) vorwegnehmen. Unsere geplante Analyse in der dritten Phase ist durch die Beziehungen zwischen Versorgungsunternehmen und Verbrauchern motiviert, bei denen mehrere Versorgungsunternehmen zunächst die Details der angebotenen Lieferverträge auswählen und dann die Verbraucher einen Vertrag wählen und ihre Konsumentscheidungen treffen. Als wichtiges Merkmal in der dritten Phase planen wir, verschiedene Risikoaspekte einzubeziehen, die für die Verbraucherentscheidungen auf der unteren Stufe von entscheidender Bedeutung sind.
B09 „Strategische Buchungsentscheidungen im Entry-Exit-System“
(Third Party Funds Group – Sub project)Overall project: DFG TRR 154 „Mathematische Modellierung, Simulation und Optimierung am Beispiel von Gasnetzwerken“
Term: 1. July 2018 - 30. June 2022
Funding source: DFG / Sonderforschungsbereich / Transregio (SFB / TRR)
URL: https://trr154.fau.de/index.php/de/teilprojekte/b09Ziel dieses Teilprojekts ist die Entwicklung von Methoden zur Untersuchung strategischer Interaktion bei Angebotsentscheidungen in Gasmärkten mithilfe mehrstufiger Optimierungsmodelle. Als Ausgangspunkt dient ein Modell des Entry-Exit-Systems in Gasmärkten mit einer Fokussierung auf strategische Buchungs- und Nominierungsentscheidungen von Gasanbietern.Die resultierende zweistufige strategische Interaktion kann als Gleichgewichtsproblem mit Gleichgewichtsrestriktionen (EPEC) formuliert werden. In diesem Marktspiel wählt jeder Marktteilnehmer seine Strategie unter Berücksichtigung der von den anderen Anbietern zeitgleich getroffenen Entscheidungen und unter Berücksichtigung von zeitlich nachgelagerten Entscheidungen. Das zu betrachtende EPEC beschreibt also ein Spiel, bei dem jeder einzelne Spieler ein zweistufiges Optimierungsproblem, genauer ein mathematisches Programm mit Gleichgewichtsrestriktionen (MPEC) lösen muss.Unter Ausnutzung der spezifischen Struktur des resultierenden EPECs sollen passgenaue Algorithmen zur Berechnung der Marktgleichgewichte entwickelt und Rahmenbedingungen identifiziert werden, welche die Existenz und Eindeutigkeit des Marktgleichgewichts sicherstellen. Die theoretischen und algorithmischen Ergebnisse werden schließlich genutzt, um die Auswirkung strategischer Interaktion auf Buchungspreise und Marktergebnisse abzuschätzen und die Abhängigkeit der Lösungen von Marktstruktur und Marktdesign zu untersuchen.Storage B – Efficient hydrogen logistics
(Third Party Funds Group – Sub project)Overall project: Energie Campus Nürnberg (EnCN2)
Term: 1. January 2017 - 31. December 2021
Funding source: Bayerische Staatsministerien, andere FörderorganisationDecarbonisation of the mobility sector is an important factor in the fight against climate change. Battery-powered electric vehicles can play an important role in this process. However, special challenges may arise in the fields of range, charging infrastructure, grid stability and heavy goods vehicles. In the short to medium term, it can therefore be assumed that battery electric vehicles will be supplemented by the use of synthetic fuels such as hydrogen. Efficient logistics is an elementary component of hydrogen mobility, especially due to the difficult handling and low volumetric energy density of the gas. In the research focus "Efficient Hydrogen Logistics" of the partial project "Storage B" of EnCN2, an interdisciplinary team of engineers and economists is working on the future of hydrogen mobility. So-called LOHC (Liquid Organic Hydrogen Carrier) offer an innovative alternative for hydrogen logistic to compressed hydrogen, cryogenic hydrogen or on-site production by electrolysis. The hydrogen molecules can be chemically bound to the liquid LOHC by catalytic hydrogenation and then stored and transported as a liquid without loss. The hydrogen is released at the filling station and the LOHC can be used for reloading. Mathematical models are used to investigate and classify the various technologies and mobility concepts in terms of their economic efficiency and their influence on the energy system.
Energiemarktdesign
(Third Party Funds Group – Sub project)Overall project: Energie Campus Nürnberg (EnCN2)
Term: 1. January 2017 - 31. December 2021
Funding source: Bayerisches Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst (ab 10/2013)
URL: http://www.encn.de/en/forschungsthemen/energiemarktdesign/In the project “Energy Markt Design” within EnCN2 a team of researchers from economics, mathematics, and law analyses the economic and regulatory environment for the transformation of the energy system. The main objectives are to enhance the methods in energy market modeling and to contribute with well-grounded analyses to the policy discourse in Germany and Europe. For the electricity market, the focus is on the steering effect of market designs on regulated transmission expansion and private investments, as well as on the identification of frameworks at the distribution level that provide regional stakeholders with business models for the provision of flexibility measures. In order to address these complex issues, mathematical techniques are developed within the project that allow for solving the respective models. Another key research topic results from the advancing sector coupling in energy markets. Within EMD, gas market models, that are developed within DFG Transregio 154 (Simulation and Optimization of Gas Networks) in cooperation with project partners, are applied to evaluate the European gas market design. The long-term objective of the research group is an integrated assessment of the electricity and gas market design and their combined effects on investment decisions.
Welfare optimal nominations in gas networks and associated equilibria
(Third Party Funds Group – Sub project)Overall project: SFB TRR 154 “Mathematische Modellierung, Simulation und Optimierung am Beispiel von Gasnetzen”
Term: 1. October 2016 - 30. June 2018
Funding source: DFG / Sonderforschungsbereich / Transregio (SFB / TRR)
URL: https://trr154.fau.de/index.php/de/teilprojekte/teilprojekte-phase1/b08-phase1The goal of this project is the analysis of the relation between (i) the equilibria of simple models of competitive natural gas markets, using complementarity problems for modeling the behavior of different players, and (ii) the solution of corresponding single-level welfare maximization problems. The understanding of this fundamental relation is a prerequisite for an analysis of the current entry-exit gas market design in Europe. Similar questions have been studied in detail in the context of electricity market modeling in the past. For natural gas markets, however, the addressed questions are much more complex and not yet well understood for adequate models of gas physics. The reasons for the high level of complexity is twofold: First, gas flow through pipeline systems is inherently nonconvex due to gas physics. This renders classical first-order optimality conditions possibly insufficient. Second, the operation of gas transport networks comprises the control of active network devices like (control) valves or compressors. These devices introduce binary aspects and thus a further type of non-convexity to the models of the underlying equilibrium problems. As a result of the project we will obtain a first reference model that combines gas physics and a market analysis in a well-understood way. This will lay the ground for multilevel models of entry-exit natural gas markets that account for network characteristics. Beyond that, our results will enhance the understanding of binary equilibrium problems.
Dezentralität und zellulare Optimierung – Auswirkungen auf den Netzausbaubedarf
(Third Party Funds Single)Term: 10. March 2016 - 30. June 2016
Funding source: Industrie
URL: https://www.prognos.com/publikationen/alle-publikationen/651/show/4eedb9172fdc35e95da3097ed742ea82/Facing the current debate about the energy transition, in this project we investigate flexible demand options as well as changed market designs and conditions as an alternative to network expansion. Further, the optimal technology mix as well as locational choice of renewable energy generation will be determined endogenously. This project will be the basis to enhance the process of network expansion systematically and to include approaches and flexibility options which have been neglected so far.
Flexible Verbraucher im Deutschen Strommarkt
(Third Party Funds Single)Term: 1. November 2015 - 31. January 2016
Funding source: IndustrieIn this research project, we analyze investment incentives for flexible manufacturing facilities within the energy market system. We propose a multi-stage equilibrium model which incorporates generation capacity investment, network expansion and redispatch, and include enhancements regarding a flexible production approach. The model allows to investigate incentives for flexible production as well as locational choices and the impact of flexible energy demand on the energy market as a whole. In particular, we explore the profitability of flexible production units for different shares of flexible energy consumers in the electricity market. Furthermore, we examine from which point on flexible production units will have a considerable influence on energy price development and the extent to which price fluctuations will be mitigated by flexible consumption.
Implementierung im Marktumfeld
(Third Party Funds Group – Sub project)Overall project: Solarfabrik der Zukunft: Smart Grid Solar
Term: 1. June 2012 - 31. May 2017
Funding source: Bayerische Staatsministerien, Europäische Union (EU)
URL: http://www.smart-grid-solar.de/index.htmlSince the Energy Market Liberalization, all the various decisions regarding the optimal energy supply in Germany are no longer made by fully integrated power supply companies. Instead, decisions are made by different market participants in a decentralized way. Beyond the economical optimization of the interaction between grid, suppliers, storages and consumers, a key question is, to what extent the current market design coupled with policy control mechanisms (e.g. the EEG regulations) actually reaches the implementation of the optimal system via the various decisions of all market participants.The core of the economic analysis evaluates the implementation of a smart grid system considering all relevant market participants within different political frameworks in a quantitative way. Comparing the optimal solutions derived by the work package optimization and simulation enables an identification of the necessary changes in the market design and the legal framework.